翻訳と辞書
Words near each other
・ DiscReet Records
・ Discreetly Mine
・ Discreliotia
・ Discreliotia radians
・ Discreliotia serrata
・ Discrepancy
・ Discrepancy function
・ Discrepancy of hypergraphs
・ Discrepancy theory
・ Discrepin
・ Discrete
・ Discrete and Computational Geometry
・ Discrete Applied Mathematics
・ Discrete category
・ Discrete Chebyshev polynomials
Discrete Chebyshev transform
・ Discrete choice
・ Discrete circuit
・ Discrete cosine transform
・ Discrete debris accumulation
・ Discrete differential geometry
・ Discrete dipole approximation
・ Discrete dipole approximation codes
・ Discrete element method
・ Discrete emotion theory
・ Discrete event dynamic system
・ Discrete event simulation
・ Discrete exterior calculus
・ Discrete Fourier series
・ Discrete Fourier transform


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Discrete Chebyshev transform : ウィキペディア英語版
Discrete Chebyshev transform

In applied mathematics, the discrete Chebyshev transform (DCT), named after Pafnuty Chebyshev, is either of two main varieties of DCTs: the discrete Chebyshev transform on the 'roots' grid of the Chebyshev polynomials of the first kind T_n (x) and the discrete Chebyshev transform on the 'extrema' grid of the Chebyshev polynomials of the first kind.
==Discrete Chebyshev transform on the roots grid==
The discrete chebyshev transform of u(x) at the points is given by:
: a_m =\frac\sum_^ u(x_n) T_m (x_n)
where:
: x_n = -\cos\left(\frac (n+\frac)\right)
: a_m = \frac \sum_^ u(x_n) \cos\left(m \cos^(x_n)\right)
where p_m =1 \Leftrightarrow m=0 and p_m = 2 otherwise.
Using the definition of x_n ,
: a_m =\frac \sum_^ u(x_n) \cos\left(\frac(N+n+\frac) \right)
: a_m =\frac \sum_^ u(x_n) (-1)^m\cos\left(\frac(n+\frac) \right)
and its inverse transform:
: u_n =\sum_^ a_m T_m (x_n)
(This so happens to the standard Chebyshev series evaluated on the roots grid.)
: u_n =\sum_^ a_m \cos\left(\frac(N+n+\frac) \right)
: \therefore u_n =\sum_^ a_m (-1)^m\cos\left(\frac(n+\frac) \right)
This can readily be obtained by manipulating the input arguments to a discrete cosine transform.
This can be demonstrated using the following MATLAB code:

function a=fct(f,l)
%x=-cos(pi/N
*((0:N-1)'+1/2));
f=f(end:-1:1,:);
A=size(f); N=A(1);
if exist('A(3)','var') && A(3)~=1
for i=1:A(3)

a(:,:,i)=sqrt(2/N)
*dct(f(:,:,i));
a(1,:,i)=a(1,:,i)/sqrt(2);

end
else
a=sqrt(2/N)
*dct(f(:,:,i));
a(1,:)=a(1,:)/sqrt(2);
end

The discrete cosine transform (dct) is in fact computed using a fast Fourier transform algorithm in MATLAB.
And the inverse transform is given by the MATLAB code:

function f=ifct(a,l)
%x=-cos(pi/N
*((0:N-1)'+1/2))
k=size(a); N=k(1);
a=idct(sqrt(N/2)
*(a(2:end,:) ));
end


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Discrete Chebyshev transform」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.